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ABSTRACT

 

This paper describes techniques to automatically morph from one
sound to another. Audio morphing is accomplished by representing
the sound in a multi-dimensional space that is warped or modiÞed
to produce a desired result. The multi-dimensional space encodes
the spectral shape and pitch on orthogonal axes. After matching
components of the sound, a morph smoothly interpolates the ampli-
tudes to describe a new sound in the same perceptual space. Finally,
the representation is inverted to produce a sound. This paper
describes representations for morphing, techniques for matching,
and algorithms for interpolating and morphing each sound compo-
nent. Spectrographic images of a complete morph are shown at the
end.

 

1.  INTRODUCTION

 

This paper describes techniques to automatically morph from one
sound to another. In video, morphing is a process of generating a
range of images that smoothly move from one image to another. In
a good morph, the in-between images all show one object smoothly
changing its shape and texture until it turns into another object. We
would like the same thing to happen in an audio morph. A sound
that is perceived as one object should change smoothly into another
sound, maintaining the shared properties of the starting and ending
sounds and smoothly changing the other parameters.

Figure 1 shows a block diagram of our approach. Audio mor-
phing is accomplished by representing the sound in a multi-dimen-
sional space that can be warped or modiÞed to produce a desired
result. After matching components of the sound, a morph smoothly
interpolates the sound amplitudes to describe a new sound in the

same perceptual space. Finally, the representation is inverted to
produce a sound. The body of this paper describes representations
for morphing, techniques for matching, and algorithms for interpo-
lating and morphing each sound component. Spectrographic
images of a complete morph are shown at the end.

 

2.  RELATED WORK

 

Previous work in audio morphing has used sinusoidal analysis
[1]. This paper describes techniques based on magnitude spectro-
grams. In a sense we have taken sinusoidal analysis to its limit and
allowed any sound to be easily and completely represented. Far
from complicating the problem, spectrograms make morphing eas-
ier because it is no longer necessary to track sinusoids and their
phase [2].

Work described elsewhere [3] allows spectrograms, without
their phase information, to be inverted to Þnd a sound that has the
same magnitude spectrogram. Using magnitude spectrograms to
represent the sound allows us to make dramatic changes to the
spectrograms and not worry about the phase. The phase will be
recovered later as part of the spectrogram inversion process.

This paper describes techniques for automatically morphing
one sound into another. We use a rich, multi-dimensional represen-
tation to describe sound, so it is no longer easy to see the best
matches. Auto-correspondence methods, as described for video [4],
provide accurate matches without human intervention. A similar
philosophy is used here.

This work is different from that reported on voice transforma-
tions [5]. Voice transformations change one speakerÕs utterances to
match the 

 

statistical

 

 properties of another voice. Thus every time an
/a/ is spoken, the formant frequencies are changed to match the tar-
get speakerÕs formants. This work, on the other hand, generates
new sounds that are in between two exemplars.

 

 AUTOMATIC AUDIO MORPHING

 

Malcolm Slaney, Michele Covell and Bud Lassiter

 

 

 

 Interval Research Corporation
1801 Page Mill Road, Building C

 Palo Alto, CA 94304; USA
malcolm@interval.com

MFCC

Temporal
Match

Spectral
Inversion

MFCC-1

Residue
Calculation

Sound 1
Spectrogram

Smooth
Spectrograms

Pitch
Spectrograms

Pitch
Match

Interpolation

Sound Representation (Sec. 4) Matching (Sec. 5) Interpolation (Sec. 6)

Morph
Cepstral

CoefÞcients

Sound 2
Smooth

Spectrogram
Match

Figure 1. The three stages of audio morphing, representation, matching, and interpolation, are shown. The signal path for representing sound 2 is not
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3.  TEMPORAL ASPECTS OF AUDIO MORPHING

 

Time is a special component of sound. Sound does not exist with-
out time. This simpliÞes audio morphing because sounds that hap-
pen at the same time are perceived together. Thus an audio morph
should keep simultaneous components of a sound aligned in time
throughout the morph. This means that, unlike image morphing, an
important dimension of sound, the timing, can be considered inde-
pendently of the other sound dimensions. The morphs described
here consider time separate from the other dimensions of the audi-
tory signal. As will be shown, the separability of the temporal
dimension simpliÞes all aspects of audio morphing.

Time complicates other aspects of audio morphing. Most
importantly, there are three kinds of audio morphing. In the sim-
plest case, the two sounds are stationary and we can describe the
sounds as points in a high-dimensional space. The dimensions of
this space include spectral shape, pitch, rhythm and any other per-
ceptually relevant (and quantiÞable) auditory dimensions. We
morph between the two sounds by tracing a path between the two
points in an appropriately warped space. This is directly analogous
to the image morphing case. In the simplest form, a steady vowel
morphs into a single note from an oboe.

The second kind of morph is between moving objects. The
morph starts with the characteristics of the Þrst sound and slowly
changes to have all the characteristics of the second. This is directly
analogous to morphing between videos of two different objects.

Finally, there is a unique kind of audio morph which is gener-
ated by smoothly changing a repetitive sequence of sounds. The
word xxx changes to yyy in a sequence of steps. Each step is small
and in the middle of the sequence the word sounds like something
in between xxx and yyy. The result is a cyclostationary morph. It is
cyclic because we play the sound repetitively to affect the morph. It
is stationary since each sound instance is a completely stationary
(no change) example of the range of in-between sounds.

 

4.  REPRESENTATIONS

 

A proper representation of sound is key. In video, a retinotopic
image is natural and easy for humans to change. There is no obvi-
ous choice for audio. Conventional spectrograms can represent any
sound, but cross-fading spectrograms does not produce convincing
morphs.

The problems with spectrograms are illustrated in the three
examples of Figure 2. In these examples, magnitude spectrograms
of two vowels are interpolated. A short section of the original voice
with vibrato is included at the beginning and end of the spectro-
gram to provide context. The middle of the spectrogram shows the
morph. 

In the Þrst example, the singerÕs /a/ is cross-faded to her /i/. The
morph is convincing because the pitch is similar across the morph.

In the second example, the morphed sound has two separate
pitches, causing the sound to be perceived as two different auditory
objects, and destroying the illusion of a continuous morph. Finally,
by scaling the frequencies of the spectrogram, much like sinusoidal
analysis would do, interpolation can be done across different
pitches to produce a proper morph. However, this simple scaling
does not work if there are drastic pitch changes because formants
move with the harmonics.

We would like a multi-dimensional representation of sound
where each dimension is independent and salient. Then we could
morph the sound by simple interpolation in this ideal space.
Instead, this work approximates the ideal by decomposing the
sound into a smooth spectrogram that represents the broad spectral
shape, and a second ÒpitchÓ spectrogram that encodes the pitch and
voicing of the sound.

We use mel-frequency cepstral coefÞcients (MFCC) to model
part of the sound [6]. Cepstral coefÞcients are a type of homomor-
phic processing which allows us to separate the broad spectral char-
acteristics of the sound from the pitch and voicing information. The
MFCC coefÞcients are used in the initial temporal matching and to
compute the smooth spectrogram.

MFCC is computed by resampling a conventional magnitude
spectrogram to match critical bands as measured by auditory per-
ception experiments. After computing logarithms of the Þlter-bank
outputs a low-dimensional cosine transform is computed.

The MFCC representation is inverted to generate a smooth
spectrogram for the sound. After applying the cosine transform
again and undoing the logarithm we have a smooth estimate of the
Þlter-bank output. The Þlter-bank output is then reinterpolated to
get a spectrogram. The logarithmic transform and low quefrency
cosine transform serve to Þlter out the pitch information in the
spectrogram. MFCC is good at modeling the overall spectral shape,
but it doesnÕt include pitch. When we invert MFCC we get a rough
approximation of the spectrogram, but without the pitch informa-
tion.

It would be nice if we could summarize all the information
about pitch with a small number of scalars and then smoothly vary
these numbers to get intermediate excitations. For example, we
might use one number for the pitch and one to indicate the amount
of voicing. Unfortunately, this type of summarization is not sufÞ-
cient as is seen in speech compression systems. Simple LPC sys-
tems suffer from objectionable inaccuracies in the excitation. To
provide acceptable reconstructions, a large codebook is needed to
summarize the possible residues.

In audio morphing we use a spectrogram of the residue to code
the pitch and voicing in the acoustic signal. A conventional short-
time spectrogram  encodes all the information in the signal
and the smooth spectrogram  describes the overall spectral
shape. Dividing the short-time spectrogram, , by the smooth
spectrogram, , gives us a ÒpitchÓ or residual spectrogram,

, which describes the pitch and voicing information in the
sound. The smooth and pitch spectrograms form the basis of our
morphing techniques and are illustrated in Figure 3. We recover the
original spectrogram by multiplying the pitch and smooth spectro-
grams together.

 

5.  MATCHING

 

Matching is necessary so that we know which features of the Þrst
sound correspond to any particular feature of the second. Often a
feature has moved and to affect a morph we need to slowly move
the feature from where it is in the Þrst sound to its position in the
second. There are many ways to perform the matching. Dynamic
time warping and harmonic alignment are used to match features in
audio morphing. 

S w t,( )
Ss w t,( )

S
Ss

Sp w t,( )

 

Figure 2. These three magnitude spectrograms show simple spectro-
gram morphs. The left example shows a cross-fade between /a/ and
/i/. The middle example shows a cross-fade between two /a/Õs at
different pitches. The lines crossing near the middle cause the
morph to be perceived as two sounds. The right example shows the
same start and end as the middle example, but the harmonics are
aligned before cross-fading. The pitch splitting is Þxed, but the
formant frequencies have moved.
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Dynamic Time Warping (DTW) is used to Þnd the best tempo-
ral match between the two sounds. Over the course of the morph,
we want features that are common to both sounds to remain rela-
tively Þxed in time. MFCC is often used in modern speech recogni-
tion systems as a distance metric and is used here for the same
purpose. Using DTW allows us to calculate the best match between
the two sounds so that later spectral stages have less work.

Audio morphs with different properties are created with differ-
ent matching functions. In morphing between two versions of the
same song, the melody is important. The temporal matching is done
with a distance metric based on the dominant pitch. For other music
(i.e. rap) we will want to consider the underlying rhythm.

In this work we have represented pitch and voicing information
as a spectrogram. In a pitch spectrogram the pitch information in
the sound is visible as a series of peaks. The spacing of the peaks is
proportional to the pitch. When the sound is unvoiced the peaks dis-
appear and the Òpitch spectrumÓ is ßat.

To smoothly morph the pitch spectrogram we need to match the
pitch, if present, and then cross-fade the amplitude at each fre-
quency. Unfortunately, the pitch might be absent or difÞcult to Þnd
at each point. We also have to deal with times when one sound has a
pitch and the other doesnÕt. When there is a pitch, we want to match
it in the two sounds, otherwise we want to cross-fade the noise.

To solve this problem we estimate a pitch for the entire utter-
ance. We use a combination of a conventional pitch scheme and
dynamic programming to Þnd a ÒpitchÓ everywhere.   The basic
pitch algorithm (autocorrelation of the peak enhanced waveform)
produces many possible pitch peaks. It is difÞcult to know, without
more information, which is the best pitch.

Secrest and Doddington [7] propose using dynamic program-
ming to estimate a pitch that Þts the available data (the peaks in the
pitch spectrogram) and smoothly changes over time. We use this to
calculate a ÒpitchÓ estimate for the entire sound, whether it is actu-
ally voiced or not.

We use the complete pitch estimate from both sounds to per-
form the match. It is most important to match the pitch between the
two sounds, and less important to match the inharmonic residual.
Thus we want to stretch and compress the frequency axis of the
pitch spectrograms to make sure the pitch peaks agree before we
cross-fade the two spectrograms. Depending on the change in pitch,
the unvoiced components of the sound will move in frequency. This
is less important than not splitting the harmonics that cause pitch.

Matching the features of the smooth-spectrogram is less criti-
cal. Researchers have investigated the proper domain to do interpo-
lation for voice coding [8]. They argue for cross-fading the spectral
shapes (without pre-warping) or for interpolating the spectral peak
locations by cross-fading line spectral pairs (LSP). Section 7 dis-
cusses the results of both approaches.

 

6.  ONE DIMENSIONAL MORPHING

 

A morph includes some type of interpolation step. Scalar quantities
are easiest to morph because it reduces to a simple cross-fade. If
one component of a sound description is loudness, then the loud-
ness of the morph should change smoothly from the loudness of the
Þrst sound to the loudness of the second.

Unfortunately, acoustic information is not always scalar. Tem-
poral alignment and spectral warping share the same problem.
Given a dense match between two one-dimensional curves, how do
we smoothly morph between these curves?

The data we are trying to morph is described as  and .
We want to Þnd a new curve  such that the  function is
between the  and  curves. Since the match functions are
monotonic, we know that matching lines do not cross and for each
point  there is only line establishing the correspondence. Our
problem simpliÞes to Þnding the times  and  that should be
interpolated to generate the data at . 

We do this by calculating the path location for all (sampled)
values of  and then picking the  whose path is closest to the
desired sample point, . Given lines ending at  and  as
shown in Figure 4, the intersection with the  morphing line is at

Given the proper values for  and , we generate the new data at
 by cross-fading the warped signals

This results in a smooth cross-fade between  when  and
 when .
Mappings between  and  are described as paths. Path 

warps  to look like . Thus  is the mapping that produces the
smallest different between  and . Using this, we can
simplify the above equation so that the intermediate t is given by

We could use the path map to calculate the appropriate , but
we get better results if we repeat the procedure in the other direc-
tion. Because of quantization, more than one point along the 
axis might map into the same . When  is equal to one, we will
not get an exact copy of , but some points will be slightly out of
place. It is better to repeat the procedure used to Þnd the best  to
Þnd the best . This is used to calculate the second half of the
equation for  above.

 

7.  RESULTS

 

Figure 5 shows a complete morph. This morph was generated by
splitting two sounds (ÒmorningÓ and ÒcornerÓ) into smooth and
pitch spectrograms. Dynamic programming is used on the peaks in
the pitch spectrograms to summarize the pitch information in the
two sounds. The MFCC vectors are used in dynamic time warping
to time align the sounds. The pitch spectrograms are scaled in fre-
quency to align pitch contours and cross-faded. 

Figure 3. A smooth spectrogram for the word ÒcornerÓ is shown on
the left. Its pitch spectrogram is shown on the right. The smooth
spectrogram encodes the broad spectral shapes and the pitch and
voicing is encoded in the pitch spectrogram.

s1 t( ) s2 t( )
s l t,( ) s

s1 s2

l t,( )
t1 t2

l t,( )

t1 t1
l t,( ) t1 t2

S1

S2

l=0

l=1

Figure 4. One-dimensional morphing (either in frequency or time) pro-
ceeds by warping along the dashed matching lines, , and
cross-fading the signals.
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In the results shown in Figure 5, the smooth spectrograms are
cross-faded. The interpolated spectrograms are combined and
inverted to recover the morphed sounds. This approach results in
high-quality morphs. Part of the reason that this simple approach to
smooth-spectrogram interpolation works so well may be because
MFCC was used to do the temporal pre-alignment. The pre-align-
ment helps to insure that the two MFCC vectors are similar. The
use of MFCC in many speech recognition systems would imply
that a smooth spectrogram as calculated by inverting MFCC is well
behaved. Sounds that are close in the smooth-spectrogram repre-
sentation should sound similar.

An alternative approach to matching the smooth spectrograms
was also considered. This second approach is analogous to Yong's
approach of blending LSPs. Instead of using LSP, we applied
dynamic warping, this time on the smooth spectra as a function of
frequency, to match peaks in the two sounds.

 

1

 

 The results in our
limited testing do not sound as good as cross-fading the smooth
spectrograms.

The entire process is not expensive. The cost of the homomor-
phic processing is dominated by the cost of the initial spectrogram
calculation. Depending on the breadth of the search, dynamic time
warping can be expensive, as much as O(N

 

2

 

) where N is the num-
ber of spectrogram frames. Spectrogram inversion techniques
described elsewhere [3] allow the iterative procedure to quickly
converge, often at a cost only four to Þve times as expensive as the
original spectrogram calculation.

Perhaps the biggest obstacle is that spectrogram inversion tech-
niques need overlapping windows in the time domain. Estimating
the phase of a spectrogram can be done, but each point in the wave-
form must be included in two different spectral slices. A four way
overlap is even better. Thus using 256 point windows, as in this
work, means that a new spectral slice is calculated every 64 points.

 

8.  CONCLUSIONS

 

Previous work in audio morphing has been shaped by the con-
strained representations that are used in speech and music synthe-
sis. This paper describes a new approach based on separate
spectrograms to encode the pitch and broad spectral shapes of the
sound. These spectrograms are independently modiÞed to create
pleasing morphs between many sounds.

An important contribution of this work is the realization that,
unlike image morphing, audio morphing can effectively be sepa-

 

1. Our preference for the smooth spectrogram is because LSP is not a
universal representation of sound. It is optimized for voice. The
smooth spectrogram contains much the same information as LSP but
is more general.

 

rated into multiple, independent dimensions. This paper has used as
its dimensions: time, smoothed spectral shape and high-pass or
ÒpitchÓ residual. Finally, this work has investigated techniques for
matching these independent dimensions.

Future work on audio morphing should revolve around better
representations, better matching techniques and more natural
sounding interpolation schemes. Spectrograms are a good represen-
tation of sound, but better representations will allow the details of
the pitch and voicing information to be separated. Automatic corre-
spondence simpliÞes the morphing procedure, but different match-
ing functions will be necessary for different tasks. Finally more
work is needed to Þnd perceptually optimal interpolation functions.
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word is changed during the morph. At each corresponding frame, the pitch, voicing, and spectral shapes are independently morphed. (The original
sound samples are from the Þrst verse of the recording of ÒTomÕs DinerÓ by Suzanne Vega.)

cornermorning


